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11.1 Introduction

We introduced the traditional approaches to tolerance analysis in Chapter 9. At that time, we noted
several assumptions and limitations that (perhaps not obvious to you) are particularly important in the
root sum of squares and modified root sum of squares techniques. These assumptions and limitations
introduce some risk that defects will occur during the assembly process. The problem: There is no way to
understand the magnitude of this risk or to estimate the number of defects that will occur. For example, if
you change a tolerance from .010 to .005, the RSS Model would assume that a different process with a
higher precision would be used to manufacture it. This is not necessarily true.

11.2 What Is Tolerance Allocation?

In this chapter, we will introduce and demonstrate methods of tolerance allocation. Fig. 11-1 shows how
tolerance allocation differs from tolerance analysis. Tolerance analysis is a process where we assign
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tolerances to each component and determine how well we meet a goal or requirement. If we don’t meet the
goal, we reassign or resize the tolerances until the goal is met. It is by nature an iterative process.

Figure 11-1  Comparison of tolerance analysis and tolerance allocation

With tolerance allocation, we will present methods that will allow us to determine the tolerance to assign
to each of the components with the minimum number of iterations. We will start with the defined goal for the
assembly, decide how each component part will be manufactured, and allocate tolerances so that the compo-
nents can be economically produced and the assembly will meet its requirements.

11.3 Process Standard Deviations

Prior to performing a tolerance allocation, we need to know how we’re going to manufacture each component
part. We’ll use this information, along with historical knowledge about how the process has performed in the
past, to select an expected value for the standard deviation of the process. We will use this in a similar manner
to what was introduced in Chapter 10 and make estimates of both assembly and component defect rates. In
addition we will use data such as this to assign tolerances to each of the components that contribute to
satisfying an assembly requirement.

In recent years, many companies have introduced statistical process control as a means to minimize
defects that occur during the manufacturing process. This not only works very well to detect processes that
are in danger of producing defective parts prior to the time defects arise, but also provides data that can be
used to predict how well parts can be manufactured even before the design is complete. Of interest to us is the
data collected on individual features. For example, suppose a part is being designed and is expected to be
produced using a milling operation. A review of data for similar parts manufactured using a milling process
shows a typical standard deviation of .0003 inch. We can use this data as a basis for allocating tolerances to
future designs that will use a similar process. It is extremely important to understand how the parts are going
to be manufactured prior to assigning standard deviations. Failure to do so will yield unreliable results, and
potentially unreliable designs. For example, if you conduct an analysis assuming a feature will be machined on
a jig bore, and it is actually manufactured on a mill, the latter is less precise, and has a larger standard deviation.
This will lead to a higher defect rate in production than predicted during design.

If data for your manufacturing operations is not available, you can estimate a standard deviation from
tables of recommended tolerances for various machine tools. Historically, most companies have consid-
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             Standard       Standard
             Deviation       Deviation

Process   (in.)            Process            (in.)

N/C end milling .00026 JB end milling .000105

N/C side milling .00069 JB side milling .000254

N/C side milling, > 6.0 in. .00093 JB bore holes < .13 diameter .000048

N/C drilling holes  (location) .00076 JB bore holes < .13 diameter .000056

N/C drilling holes  (diameter) .00056 JB bore holes (location) .000054

N/C tapped holes  (depth) .0025 JB drilling holes (location) .000769

N/C bore/ream holes  (diameter) .00006 JB countersink (diameter) .001821

N/C bore/ream holes  (location) .00022 JB reaming (diameter) .000159

N/C countersink (location) .00211 JB reaming (location) .000433

N/C end mill parallel < 16 sq. in .00020 JB end mill parallel < 16 sq. in. .000090

N/C end mill parallel > 16 sq. in .00047 JB end mill parallel > 16 sq. in. .000232

N/C end mill flat < 16 sq. in .00019 JB end mill flat < 16 sq. in. .000046

N/C end mill flat > 16 sq. in .00027 JB end mill flat > 16 sq. in. .000132

N/C bore perpendicular < .6 deep .00020 JB bore perpendicular < .6 deep .000107

N/C bore perpendicular > .6 deep .00031 JB bore perpendicular > .6 deep .000161

Turning ID .000127

Turning OD .000132 Treypan ID .000127

Bore/ream ID .000111 Turning lengths .000357

Grinding, surface .000029 Grinding, lap .000027

Grinding, ID .000104 Grinding, tub .000031

Grinding, OD .000029

Table 11-1  Process standard deviations that will be used in this chapter

ered a process with a Cp of 1 as desirable. (See Chapters 2 and 10  for more discussion of Cp.) Using that
as a criterion, you can estimate a standard deviation for many manufacturing processes by finding a
recommended tolerance in a handbook such as Reference 1 and dividing the tolerance by three to get a
standard deviation. Table 11-1 shows some estimated standard deviations for various machining pro-
cesses that we’ll use for the examples in this book.

This chapter will introduce four techniques that use process standard deviations to allocate toler-
ances. These techniques will allow us to meet specific goals for defect rates that occur during assembly
and fabrication. All four techniques should be used as design tools to assign tolerances to a drawing that
will meet targeted quality goals. The choice of a particular technique will depend on the assumptions (and
associated risks) with which you are comfortable. To compare the results of these analyses with the more
traditional approaches, we will analyze the same problem that was used in Chapter 9. See Fig. 11-2.

Even with a statistical analysis, some assumptions need to be made. They are as follows:
• The distributions that characterize the expected ranges of each variable dimension are normal. This as-

sumption is more important when estimating the defect rates for the components than for the assembly. If
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the distribution for the components is significantly different than a normal distribution, the estimated
defect rate may be incorrect by an order of magnitude or more. Assembly distributions tend to be closer to
normal as the number of components in the stack increase because of the central limit theorem (Reference
9). Therefore, the error will tend to decrease as the number of  dimensions in the stack increase. How
important are these errors? Usually, they don’t really matter. If our estimated defect rate is high, we have a
problem that we need to correct before finishing our design. If our design has a low estimated defect rate,
an error of an order of magnitude is still a small number. In either case, the error is of little relevance.

• The mean of the distribution for each dimension is equal to the nominal value (the center of the tolerance
range). If specific information about the mean of any dimension is known, that value should be substituted

             Standard       Standard
             Deviation       Deviation

Process   (in.)            Process            (in.)

Aluminum Casting Steel Casting

Cast up to .250 .000830 Cast up to .250 .000593

Cast up to .500 .001035 Cast up to .500 .001060

Cast up to .1.00 .001597 Cast up to 1.00 .001346

Cast up to 2.00 .002102 Cast up to 2.00 .002099

Cast up to 3.00 .002662 Cast up to 3.25 .003064

Cast up to 4.00 .003391 Cast up to 4.25 .003921

Cast up to 5.00 .003997 Cast up to 5.25 .005118

Cast up to 6.00 .004389 Cast up to 6.25 .005784

Cast up to 7.00 .005418 Cast up to 7.25 .007427

Cast up to 8.00 .006464 Cast up to 8.25 .007699

Cast up to 9.00 .006879 Cast up to 9.25 .008317

Cast up to 10.00 .008085 Cast up to 10.00 .009596

Cast up to 11.00 .008126 Cast up to 11.00 .011711

Cast over 11.00 .008725 Cast over 11.00 .011743

Cast flat < 2 sq. in. .001543 Cast flat < 2 sq. in. .001520

Cast flat < 4 sq. in. .002003 Cast flat < 4 sq. in. .002059

Cast flat < 6 sq. in. .002860 Cast flat < 6 sq. in. .003108

Cast flat < 8 sq. in. .003828 Cast flat < 8 sq. in. .004131

Cast flat < 10 sq. in. .004534 Cast flat < 10 sq. in. .004691

Cast flat 10+ sq. in. .005564 Cast flat 10+ sq. in. .005635

Cast straight < 2 in. .001965 Cast straight < 2 in. .002197

Cast straight < 4 in. .004032 Cast straight < 4 in. .004167

Cast straight < 6 in. .004864 Cast straight < 6 in. .005240

Cast straight < 8 in. .007087 Cast straight < 8 in. .006695

Cast straight < 10 in. .007597 Cast straight < 10 in. .007559

Cast straight over 10 in. .009040 Cast straight over 10 in. .009289
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in place of the nominal number in the dimension loop. An example where this might apply is the tendency
to machine toward maximum material condition for very tightly toleranced parts.

• Each of the dimensions in the stack is statistically independent of all others. This means that the value (or
change in value) of one has no effect on the value of the others. (Reference 7)

Tolerances on some dimensions, such as purchased parts, are not usually subject to change. In the
following methods, their impact will be considered to act in a worst case manner. For example, if a dimension
is 3.00 ± .01 in., it will affect the gap as if it is really fixed at 2.09 or 3.01 with no tolerance. We choose the
minimum or maximum value based on which one minimizes the gap.

11.4 Worst Case Allocation

In many cases, a product needs to be designed so that assembly is assured, regardless of the particular
combination of dimensions within their respective tolerance ranges. It is also desirable to assign the individual
tolerances in such a way that all are equally producible. The technique to accomplish this using known
process standard deviations is called worst case allocation. Fig. 11-2 shows a motor assembly similar to Fig.
9-2 that we will use as an example problem to demonstrate the technique.

Figure 11-2  Motor assembly
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11.4.1 Assign Component Dimensions

The process follows the flow chart shown in Fig. 11-3, the worst case allocation flow chart. The first step
is to determine which of the dimensions in the model contribute to meeting the requirement. We identify
these dimensions by using a loop diagram identical to the one shown in Fig. 9-3, which we’ve repeated in
Fig. 11-4 for your convenience. In this case, there are 11 dimensions contributing to the result. We’ll
allocate tolerances to all except the ones that are considered fixed. Thus, there are five dimensions that
have tolerances and six that need to be allocated. The details are shown in Table 11-2.

Figure 11-3  Worst case allocation flow chart

Assign component dimensions, di

Determine assembly performance, P

Assign the process with the largest
σ

i to each component

Calculate the worst case assembly, twc6

P ≥ twc6

Calculate ti using P

Calculate ZiCalculate ti using P
Select new
processes

Other
processes
available?

Adjust di to
increase P?

Yes

NoYes

No

No

Yes
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11.4.2 Determine Assembly Performance, P

The second step is to calculate the assembly performance, P. This is found using Eq. (11.1). While it is
similar to Eq. (9.1) that was used to calculate the mean gap in Chapter 9, there are some additional terms
here. The first term represents the mean gap and the result is identical to Eq. (9.1). This value is adjusted
by two added terms. The first added term, Σ|aj tjf |, accounts for the effect of the fixed tolerances. In this
case, we calculate the sum of the tolerances and subtract them from the mean gap. The effect is that we
treat fixed tolerances as worst case. The second added term is an adjustment on the gap to account for
instances where you need to keep the minimum gap greater than zero. For example, suppose we want to

        Mean    Standard
Variable     Dimension     Fixed/        ± Tolerance    Deviation
   Name           (in.)         Sensitivity   Variable    (in.)        (in.) Process

A .3595 -1 Fixed .0155

B .0320 1 Fixed .0020

C .0600 1 Variable .000357 Turning length

D .4305 1 Fixed .0075

E .1200 1 Variable .000357 Turning length

F 1.5030 1 Fixed .0070

G .1200 1 Variable .000357 Turning length

H .4305 1 Fixed .0075

I .4500 1 Variable .00106 Steel casting up to .500

J 3.0250 -1 Variable .000357 Turning length

K .3000 1 Variable .0025 N/C tapped hole depth

Table 11-2  Data used to allocate tolerances for Requirement 6

Figure 11-4  Dimension loop for Requirement 6
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ensure a certain ease of assembly for two parts. We may establish a minimum gap of .001 in. so they don’t
bind when using a manual assembly operation. Then we would set gm to .001 in. The sum, P, is the amount
that we have to allocate to the rest of the dimensions in the stack. For Requirement 6, assembly ease is not
a concern, so we’ll set gm to .000 in.

m
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jfj
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ii gtadaP −−= ∑∑

== 11
(11.1)

where
n = number of independent variables (dimensions) in the stackup
p = number of fixed independent dimensions in the stackup

For Requirement 6,

( ) ( ) ( ) ( ) ( ) in.03950075100701007510020101551
1

 ......ta
p

j
jfj =++++−=∑

=

gm = .000 in.

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )
( ) ( ) ( )

in.022.
000.0395.3000.10250.314500.1

4305.11200.15030.111200.14305.10600.10320.13595.1

 =
−−+−++

+++++++−=P

Thus, we have .022 in. to allocate to the six dimensions that do not have fixed tolerances.

11.4.3 Assign the Process With the Largest σ i to Each Component

The next step on the flow chart in Fig. 11-3 is to choose the manufacturing process with the largest
standard deviation for each component. For the allocation we are completing here, we will use the pro-
cesses and data in Table 11-1. If you have data from your manufacturing facility, you should use it for the
calculations. Table 11-2 shows the standard deviations selected for the components in the motor assem-
bly that contribute to Requirement 6.

11.4.4 Calculate the Worst Case Assembly, twc6

The term twc6 that is calculated in Eq. (11.2) can be thought of as the gap that would be required to meet 6σ
 or another design goal.

∑=
−

=
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i
iiwc at

1
6 0.6 σ (11.2)

In the examples that follow, we’ll assume the design goal is 6σ, which is a very high-quality design. If
we use the equations as written, our design will have quality levels near 6σ. If our design goal is something
less than or greater than 6σ, we can modify Eqs. (11.2) and (11.3) by changing the 6.0 to the appropriate
value that represents our goal. For example, if our goal is 4.5σ, Eq. (11.2) becomes:

∑=
−

=

pn

i
iiwc a.t

1
6 54 σ



Predicting Assembly Quality (Six Sigma Methodologies to Optimize Tolerances)     11-9

Using the process standard deviations shown in Table 11-2, twc6 for Requirement 6 is calculated
below.

( ) ( ) ( ) ( ) ( ) ( )( ) 0299.0025.1000357.100106.1000357.1000357.1000357.10.66 =+−++++=wct

11.4.5 Is P ≥  twc6?

If P is smaller than twc6, the amount we have to allocate is less than what is required for a 6σ design. If P is
greater than or equal to twc6, the tolerances we can allocate will be greater than or equal to 6σ. In our case,
the former is true, so we have some decisions to make.

The first choice would be to evaluate all the dimensions and decide if any can be changed that will
increase P. The amount to change any component depends on the sensitivity and design characteristics.
The sensitivity tells us whether to increase or decrease the size of the dimension. (Dimensions with arrows
to the right and up in the loop diagram are positive; left and down are negative.) If the dimension has a
positive sensitivity, making the nominal dimension larger will make P larger. Conversely, if you increase
the nominal value of a dimension with a negative sensitivity, the gap will get smaller. The amount of
change in the size of the gap depends on the magnitude. Sensitivities with a magnitude of +1 or –1 will
change the gap .001 in. if a dimension is changed by .001 in. Suppose we change the depth of the tapped
hole from .300 in. to .310 in. Following the flow chart in Fig. 11-3, we need to recalculate P, which is now .032
in.  Thus, we will exceed our design goal.

If we evaluate the design and find that we can’t change any of the dimensions, a second option is to
select processes that have smaller standard deviations. If some are available, we would have to recalculate
twc6 and compare it to P. In general, it takes relatively large changes in standard deviations to make a
significant impact on twc6. This option, then, can have a considerable effect on product cost.

If we follow the flow chart in Fig.11-3 and neither of these options are acceptable, we will have a
design that does not meet our quality goal. However, it may be close enough that we can live with it. The
key is the producibility of the component tolerances. If they can be economically produced, then the
design is acceptable. If not, we may have to reconsider the entire design concept and devise an alternative
approach. For the purposes of this example, we’ll assume that design or process changes are not possible,
so we have to assign the best tolerances possible. After that we can evaluate whether or not they are
economical.

We’ll use Eq. (11.3) to calculate the component tolerances. Looking at the terms in Eq. (11.3), we see
that P and twc6 will be the same for all the components. Thus, components manufactured with similar
processes (equal standard deviations) will have equal tolerances.  We’ll have three different tolerances
because we have three different standard deviations: .000357 in. for turned length, .0025 in. for tapped hole
depth, and .00106 in. for the cast pulley.
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First, for the dimensions made on a Numerical Controlled (N/C) lathe:
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For the dimensions made by casting (pulley):
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Finally, for the tapped hole depth:
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Table 11-3 contains the final allocated tolerances.

Table 11-3  Final allocated and fixed tolerances to meet Requirement 6

             Mean          Allocated
Variable          Dimension        Fixed/          ± Tolerance   ± Tolerance
   Name                (in.)      Variable       (in.)                 (in.)

A .3595 Fixed .0155

B .0320 Fixed .0020

C .0600 Variable .0016

D .4305 Fixed .0075

E .1200 Variable .0016

F 1.5030 Fixed .0070

G .1200 Variable .0016

H .4305 Fixed .0075

I .4500 Variable .0046

J 3.0250 Variable .0016

K .3000 Variable .011

11.4.6 Estimating Defect Rates

We have to complete two more tasks to finish the analysis. The first will be to verify that all the dimensions
with allocated tolerances are equally producible. Our definition of producibility in this case will be the
estimated defect rate. Eq. (11.4) defines a term Z i that represents the number of standard deviations
(sigmas) that are between the nominal value of a dimension and the tolerance limits. If we assume that the
components are produced with a process that approximates a normal distribution, then we can use some
standard tables to estimate the defect rate.

i

i
i

t
Z

σ
= (11.4)

The method to calculate the defect rate depends on the nature of the standard deviation used and the
way the data was collected. For example, suppose the standard deviation represented a sample rather than



Predicting Assembly Quality (Six Sigma Methodologies to Optimize Tolerances)     11-11

the total population. Since we’re usually interested in long-term versus short-term yields, the sample may
not represent what will happen over a long period of time. We have a couple of techniques to use to adjust
the calculation to account for long-term effects.  The first one involves a shift in the mean; the second an
inflation of the value of the standard deviation. In both cases, we’ll use Eq. (11.4) and assume the
component dimensions will be normally distributed.

For the dimensions that are manufactured on the N/C lathe, the tolerance is .0016 in. and the standard
deviation is .000357 in. If we use the mean shift model, we’ll calculate Z directly from Eq. (11.4).

48.4
000357.

0016.
1 ==Z

We now reduce the value of Z1 by 1.5, which is equivalent to shifting the mean by 1.5 standard
deviations (Reference 5). Thus, we will look in a table of values from a standard normal distribution (see
Chapter 10 Appendix) with Z = 4.48 – 1.5 = 2.98. The defect rate is equal to the area to the right of the TU line
in Fig. 11-5 that represents the component dimension tolerance limit (far right). From the Z value we just
calculated, the estimated defect rate will be .0014, or the yield on this dimension will be 99.86%. Since the
mean has been shifted, it is only necessary to get the value from one tail of the distribution. The other tail
is very small in comparison and its effect is negligible.

When doing this calculation, we take a shortcut to simplify the technique. When we assume a mean
shift of 1.5 standard deviations, we make no mention of the direction that the mean shifts. Our example
(Fig. 11-5) showed the mean shifting +1.5σ. We could have shown it shifting 1.5σ in the negative direction
just as easily. We are actually assuming that the shift happens in both directions with an equal probability.
Therefore, the complete equation could more properly be written as .5*.0014 + .5*.0014 = .0014, which is
the same number as before.

The second way to adjust the defect rate estimate is to inflate the value of the standard deviation.
Usually, the factor chosen is based on data from statistical process control and is between 33% and
50%. We’ll use 33% here. The new value for the standard deviation is:

Figure 11-5  Effect of shifting the mean
of a normal distribution to the right. T

L
 is

the lower tolerance limit, T
U
 the upper

tolerance limit, µ
n
 is the unshifted mean,

and µ
s
 is the shifted mean

.000357(1.33) = .000475 in.

and

37.3
000475.
0016.
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We can look up Z from a table of tail area of a normal distribution (see Appendix of Chapter 10). The
estimated defect rate is .00075 or the yield is 99.92%. Note that in this case, we double the value from the
table so that both tails of the distribution are included. This is necessary because, as shown in Fig. 11-6,
the area in both tails is the same and one is not negligible compared to the other.

Normally, we don’t expect the answer to be the same for both methods. The one you choose should
be based on your knowledge about the manufacturing process and the data collected.

The tolerances for the pulley and the tapped hole depth are determined in similar manner and are .0046
in. and .011 in. respectively. If we follow the same process as above, we can verify that the estimated defect
rates for these two dimensions are identical to the lathe parts and they are equally producible.

11.4.7 Verification

Finally, we should verify that the tolerances will meet Requirement 6.  We’ll use Eq. (9.2) to ensure that we
can assemble the components as desired.

∑
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011.10016.10046.1
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=

n

i
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Recall that Requirement 6 is a minimum gap of zero. Using the worst case allocation technique, we
were able to quickly assign tolerances so that the minimum gap is .0615 in. - .0615 in. = .0000 in. This meets
our performance requirement with a single pass through the process. While the tolerances added up
exactly to the worst case requirement in this case, they often do not because of rounding errors.

Figure 11-6  Centered normal distribution. Both tails are significant.
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11.4.8 Adjustments  to Meet Quality Goals

In the previous sections, we quickly allocated tolerances that met Requirement 6, but without meeting our
quality goal of 6σ  producibility.  We briefly discussed the other options presented by the flow chart in Fig.
11-3. The first and most desirable choice is to modify the nominal component dimensions so that P is
greater than or equal to twc6. It is clear that changing any combination of the dimensions so that P is
increased by twc6 – P = .0299 in. – .022 in. = .0079 in. will accomplish the task. We can look at Table 11-2 to
give us guidance about how to change component dimensions. The sensitivity for each dimension is the
key factor. Increasing a dimension with a positive sensitivity will increase P, while increasing a dimension
with a negative sensitivity will make P smaller. Also, it is generally not practical to change any of the
dimensions with fixed tolerances, since the dimension is usually fixed as well. Therefore, we can increase
P by changing the thickness of the inner bearing cap (component dimension C) from .060 in. to .068 in. We
can easily calculate a new value of P using Eq. (11.1) and find it is now .030 in. Since P is now greater than
twc6, we can allocate tolerances that meet our quality and assembly goal simultaneously.

It would be a less desirable choice if we decided to try to change our processes to try to make twc6
smaller. Even though the mathematics of the problem don’t seem to steer us away from this option, reality
does. The first problem is that our unit costs would rise as we move to more precise processes. Second, it
usually takes many process changes to make a significant change in twc6, compounding the cost penalty.
If we end up in a situation where we can’t alter P, it is often better to either review the entire design concept
and consider other approaches to achieving the design’s objective or accept the lower assembly
producibility from our original allocation.

A third option we could consider is a statistical allocation technique that we will discuss in later
sections of this chapter.

11.4.9 Worst Case Allocation Summary

Let’s recap the important points about worst case allocation.
• Tolerances will combine to meet assembly requirements at worst case.
• Tolerances are allocated with a minimum of iteration.

• Worst case allocation will lead to tolerances that are equally producible, based on estimated defect
rates.

• Tolerances that are manufactured using similar manufacturing processes will be assigned the same
values.

• Choosing the most economical processes (largest standard deviation) first can help lead to the lowest
cost design.

• Data from the manufacturing floor will lead to predictable quality levels.
• Since we are performing a worst case analysis, the predicted assembly yield is 100%.

11.5 Statistical Allocation

Although worst case allocation will lead to a design with each dimension equally producible, it can cause
tighter tolerances than are necessary. In a manner similar to what is used for traditional RSS analysis, we
will statistically combine standard deviations to determine an expected variation of the assembly, which
will allow a prediction of the number of defects that may occur. Then we will allocate tolerances to each of
the component dimensions so that each of them is equally producible and will be larger than we achieved
with the worst case allocation model.
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Figure 11-7  Statistical allocation flow chart

Looking at the statistical allocation flow chart shown in Fig. 11-7, there is an obvious similarity to the
one used for worst case allocation. The differences are primarily in the equations used to calculate the
terms.
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11.5.1 Calculating Assembly Variation and Defect Rate

In Chapter 9,  Eq. (9.8) was developed during derivation of the RSS technique. It shows how standard
deviations of each of the dimensions in a tolerance analysis can be combined to yield a standard deviation
of the gap.

( )∑
=

=
n

i
iiAssy a

1

2σσ (11.5)

The use of Eq. (11.5) requires that all the variables (dimensions) be statistically independent. Two (or
more) variables are considered statistically independent if the value (or change in value) of one has no
effect on the value of the other(s).  (Reference 8)

Eq. (11.5) gives us the ability to estimate the defect rate at the assembly level in the same manner that
we calculated it for the component dimensions with worst case allocation. The standard deviations (σis)
used in the equation are the same ones from Table 11-1 that we used during worst case allocation. Thus,

Assy
Assy

P
Z

σ
= (11.6)

From ZAssy we can find the estimated assembly defect rate using the same techniques introduced in
section 11.4.6.

11.5.2 First Steps in Statistical Allocation

Referring to the process flow chart in Fig. 11-7, the first three steps are identical to the ones for worst case
allocation. For Requirement 6, the component dimensions, P, and standard deviations are the same ones
we used in sections 11.4 through 11.4.7 and shown in Table 11-2. Recall that P is the clearance between the
end of the screw and the bottom of the tapped hole and that it has a value of .022 in. We determined the
value for P using Eq. (11.1) and it consists of the nominal gap that is reduced by the effect of fixed
tolerances and the minimum clearance requirement.

11.5.3 Calculate Expected Assembly Performance, P6

The next step is slightly different than for worst case allocation, but the meaning is similar. Like  twc6, P6 can
be thought of as the goal to meet a particular assembly defect objective. When using Eq. (11.7) below, the
goal would be 6σ.

Assy.P σ066 = (11.7)

Inserting the values from Table 11-2 into Eqs. (11.5) and (11.7) for Requirement 6,

( )( ) ( )( ) ( )( ) ( )( ) ( )( ) ( )( )
in.  00281.

0025.1000357.100106.1000357.1000357.1000357.1 222222

=

+−++++=Assyσ

and

( )
in01685.

00281.0.66

=
=P
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11.5.4 Is P ≥  P6?

If P is smaller than P6 , the amount we have to allocate is less than what is required for both the assembly
and components to be a 6σ design. Conversely, if P is greater than or equal to P6 , we can allocate
tolerances so that the assembly and all the component dimensions that contribute to Requirement 6 will be
greater than or equal to 6σ. In our case, the former is true, so we can allocate the tolerances to each of the
component dimensions.

Before we allocate the tolerances, though, let’s evaluate the expected assembly defect rate. Once
again, the standard deviations we are using are considered short-term values, so the calculated standard
deviation for the assembly is a short-term value. Thus, we’ll have to adjust it so we can estimate the
assembly defect rate we will see over an extended period of time. We’ll use the same two techniques as in
section 11.4.6 along with Eq. (11.6).

Using the mean shift model, as shown in Fig. 11-5,

83.7
00281.
022.

=

=AssyZ

From a table of the standard normal distribution with Z = ZAssy - 1.5 = 6.33, the tail area in the normal
distribution is 1.8(10-10). Before we can estimate the assembly defect rate, we need to think about the
condition where acceptable assembly occurs. When we calculated defect rates for the component dimen-
sions using the worst case allocation technique, we needed to be concerned about parts that were
manufactured both above and below the tolerance limits. For the assembly we are evaluating, we are
concerned if the gap becomes too small, but larger gaps are not expected to cause any problems. Thus, we
won’t consider large gaps to be defects and the estimated defect rate will be half the area of the tail area,
or 9.0(10-11).

If we choose to inflate the standard deviation, the same factor of 33% that we used earlier is appro-
priate. The adjusted standard deviation is:

.00281(1.33) = .00374 in.

and

88.5
00374.

022.

=

=AssyZ

Again looking in a table of areas from a standard normal distribution, we find that the area beyond the
value of 5.88 is 2.5(10-9). Since this value is for a unilateral tail area and we are only concerned with one side
of the distribution, there is no need to double the value. Therefore, the estimated assembly defect rate
using the inflation technique is 2.5(10-9).

Regardless of the method we use to transform our values from short term to long term, there is very
little chance of a defect occurring with this assembly.

When we use the normal distribution to estimate assembly defect rates, there are a couple of assump-
tions we’re making that are worth noting. First, we are assuming the assembly distribution is indeed
normal. If each of the component distributions is normal, then the assembly distribution will be normal for
these kinds of problems (linear combinations). If some of the component distributions are non-normal,
then the assembly distribution is also non-normal. The error that results may or may not be significant,
and is relatively difficult to determine through direct analytical means. (Reference 4) A commonsense
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approach will help us decide if it is important or not. If we have a situation like the one that we’ve just
evaluated, our estimation errors could be incorrect by two or three orders of magnitude and we would still
have very low defect rates. In cases similar to this, it makes little difference whether the distribution is
normal or not; we still have a very slight chance that an assembly will be defective. If the defect rate is
much higher, the error caused by the shape of the distribution may become significant. In these cases, a
Monte Carlo simulation (Reference 2) or a second-order technique (Reference 4) can be used to find a
better estimate of the shape of the assembly distribution and the defect rate.

A second assumption we make is that there is no inspection of component parts. When we inspect
parts, we rework or discard the defects, and the final distribution might look like Fig. 11-8 instead of a full
normal distribution. While this looks pretty significant, it is not usually so. The distribution shown in Fig.
11-8 is truncated at about ± 2σ. Parts with such a high defect rate are not desirable in production. If we
suspect that this will occur, a Monte Carlo technique is a good alternative to use to estimate defect rates.
We could also consider a worst case allocation approach. In most cases, the effect of the truncation on the
assembly defect rate is negligible and ignoring it immensely simplifies the calculations.

11.5.5 Allocating Tolerances

There are two different approaches we can use to allocate the tolerances. The first, statistical allocation,
is to allocate tolerances to each of the component dimensions to meet a specific quality goal. For example,
if our goal is 6σ, we would use Eq. (11.8), which allocates tolerances to each dimension that are 6 times the
standard deviation.

ii .t σ06= (11.8)

With this technique, the tolerance for the dimensions created by turning on an N/C lathe is

( )
in.0021.

000357.0.6

  =
=t

For the dimensions made by casting (pulley):

( )
in.0064.

00106.0.6

  =
=t

Finally, for the tapped hole depth:

( )
in.015.

0025.0.6

  =
=t

Figure 11-8  Normal distribution that has
been truncated due to inspection
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to inspection
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Table 11-4  Fixed and statistically allocated tolerances for Requirement 6

A second method for statistically allocating tolerances, RSS allocation, would give us component
tolerances that have the same estimated defect rate as the assembly.

iAssyi Zt σ= (11.9)

We can also express the same relationship as
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Since we’ve already calculated ZAssy , we’ll use the simplest of these equations, Eq. (11.9), to calculate
tolerances.

First, for the dimensions made on an N/C lathe:

( )
in.  0028.

000357.83.7

=
=t

For the dimensions made by casting (pulley):

( )
in.  0083.

00106.83.7

=
=t

         Statistically
             Mean            Allocated

Variable          Dimension        Fixed/          ± Tolerance     ± Tolerance
   Name                (in.)      Variable       (in.)                   (in.)

A .3595 Fixed .0155

B .0320 Fixed .0020

C .0600 Variable .0021

D .4305 Fixed .0075

E .1200 Variable .0021

F .5030 Fixed .0070

G .1200 Variable .0021

H .4305 Fixed .0075

I .4500 Variable .0064

J 3.0250 Variable .0021

K .3000 Variable .015

The results for all the dimensions are shown in Table 11-4.
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Finally, for the tapped hole depth:

( )
in.  0196.

0025.83.7
=
=t

The tabulated results for the RSS allocation method are shown in Table 11-5. When we compare the
results in Table 11-4 that were calculated with the first method, we see the tolerances are larger. This is a
consequence of magnitude of the performance requirement, represented here by P, compared to a specific
goal for defect rate. In this case, P is larger than required to meet a specific defect goal (e.g., 6σ that is
represented by P6). Therefore, restricting the allocated tolerance to the 6σ goal makes it smaller than if it is
calculated based on the assembly defect rate. On the other hand, when P is smaller than P6 the allocated
tolerance will be greater for the first method than the second. The assembly defect rate is the same for both
cases because we are assuming there is no parts screening or inspection at the component level.

Table 11-5  Fixed and RSS allocated tolerances for Requirement 6

               RSS
             Mean            Allocated

Variable          Dimension        Fixed/          ± Tolerance     ± Tolerance
   Name                (in.)      Variable       (in.)                   (in.)

A .3595 F .0155

B .0320 F .0020

C .0600 V .0028

D .4305 F .0075

E .1200 V .0028

F 1.5030 F .0070

G .1200 V .0028

H .4305 F .0075

I .4500 V .0083

J 3.0250 V .0028

K .3000 V .0197

If we use RSS allocation, the calculated component tolerances will equal P when combined using the
RSS analysis from Chapter 9, Eq. (9.11).

in. 022.

0197.0028.0083.0028.0028.0028. 222222

=

+++++=Assyt

We didn’t fully discuss the options on the flow chart in Fig. 11-7 that we would explore if P was less
than P6. They are the same as with worst case allocation. The first choice would be to modify one or more
of the component dimensions so that P is greater than or equal to P6. If this is not an option, a more costly
alternative is to select different processes with smaller standard deviations. Finally, if both of these are
impractical or prohibitively expensive, the design concept can be re-evaluated.
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11.5.6 Statistical Allocation Summary

Let’s recap the important points about these two statistical allocation techniques.
• Tolerances allocated using the statistical techniques are larger than the ones allocated with the worst

case technique.
• Predicting assembly quality quantifies the risk that is being taken with a statistical allocation.
• Tolerances are allocated to take advantage of the statistical nature of manufacturing processes.
• Tolerances are allocated with a minimum of iteration.
• Statistical allocation will lead to tolerances that will meet specific goals for defect rate.

• RSS allocation will lead to tolerances that will combine, using the RSS analysis technique, to meet the
assembly requirement,

• Tolerances that are manufactured using similar manufacturing processes will be assigned the same
values.

• Choosing the most economical processes (largest standard deviation) first can help lead to the lowest
cost design.

• Data from the manufacturing floor will lead to predictable quality levels.

11.6 Dynamic RSS Allocation

The next two techniques we’ll investigate are modifications of Motorola’s dynamic RSS and static RSS
methods from Reference 7. Both follow the flow chart of Fig. 11-7, so we’ll highlight the differences instead
of rigorously following the chart. The primary difference is the way that P6 is calculated. We will allocate
tolerances in a manner similar to the RSS allocation technique.

Motorola’s equation for dynamic RSS is repeated below:
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Cpk3
(11.11)

Let’s relate these terms to the same ones we’ve been using. First, ZF is the same as ZAssy. Vi is +1 or
–1 depending on the direction of the arrow in the loop diagram and Bi is the magnitude of the sensitivity.
Combined, ViBi is equal to ai , Ni is the same as di ,and F is gm.

Now let’s look at the denominator. Harry and Stewart derive this in Reference 6 by defining a term

Cpk3
T

adj =σ (11.12)

where Cpk is a capability index commonly used in statistical process control. We’ll use the definition of
Cpk and a second index, Cp, to define a convenient way to use σadj. (See Chapters 2 and 10 for more
explanations about Cp and Cpk.) The equations defining Cp and Cpk are:

σ6
Cp

LSLUSL −
= (11.13)

where USL is the maximum allowable size of a feature and LSL is the minimum allowable size. Therefore,
USL - LSL = 2T.
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( )k−= 1CpCpk (11.14)

Combining equations (11.12), (11.13), and (11.14),

( )
adj

TkLSLUSL
σσ 3

1
6

=−−
(11.15)

Whenever we do a statistical analysis or allocation, the tolerance must be equal bilateral as explained
in Chapter 9. Thus, USL – LSL = 2T. Substituting into Eq. (11.15) and simplifying gives us

( )kadj −
=

1
σσ (11.16)

The adjusted value of the standard deviation in Eq. (11.16) includes the transformation from a short-
term value to a long-term one. Thus, it is similar to the adjustments we made to the standard deviation in
section 11.4.6. The way we inflated the standard deviation in section 11.4.6 was by multiplying it by a
factor that was between 1.33 and 1.50.

Substituting all these terms into Eq. (11.11) and recalling that Vi is either +1 or –1 gives us
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This equation is beginning to look very similar to the statistical allocation model from section 11.5
through 11.5.6. The primary difference is that the standard deviations from Table 11-1 are adjusted by an

inflation factor, ( )k−1
1

, prior to calculating the assembly standard deviation. Eq. (11.17) also does not

account for the effect of fixed tolerances, which can be easily incorporated by subtracting them from the
numerator. The equation is now
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Comparing the numerator of Eq. (11.18) to Eq. (11.1), we find that it is identical to P.  Simplifying,
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For Requirement 6, P is .022 in.  We’ll use the values of ( )k−1
1

 from Table 11-6  for each dimension.

We’ll also use the same values for the standard deviations for the component dimensions as before. From
Eq. (11.14) we see that the values to use for (1 - k) are available from SPC data or we can make estimates
based on process knowledge.
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Table 11-6  Standard deviation inflation factors and DRSS allocated tolerances for Requirement 6

        DRSS
             Mean      Allocated

Variable           Dimension         ( )k1
1
−            ± Tolerance

   Name                (in.)                           (in.)

A .3595

B .0320

C .0600 1.05 .0025

D .4305

E .1200 1.22 .0029

F 1.5030

G .1200 1.13 .0027

H .4305

I .4500 1.27 .0088

J 3.0250 1.33 .0031

K .3000 1.18 .0195

The denominator is the standard deviation of the assembly. Since it is calculated using different
assumptions than previously, we’ll call it σDAssy.

( )( )( ) ( )( )( ) ( )( )( )
( )( )( ) ( )( )( ) ( )( )( )
in.  00335.

0025.18.11000357.33.1100106.27.11

000357.13.11000357.22.11000357.05.11
222

222

=

+−++

++
=DAssyσ

(11.19)

We’ll find P6 by modifying Eq. (11.7), renaming the term PD6.

( )
0151.

00335.5.4

5.46

=
=

= DAssyDP σ

We changed the 6.0 to 4.5 because the former value is based on short-term standard deviations. Since
the value of σDAssy calculated in Eq. (11.19) is based on long-term effects, it would be inappropriate to
include them again when calculating PD6. Since P ≥ PD6 , we can follow the flow chart of Fig. 11-7 and
calculate ZAssy.

57.6
00335.0

022.0

=

=AssyZ

Remember, we adjusted the standard deviations for the components before calculating σAssy, so there
is no need to account for long-term effects by reducing the value of ZAssy to simulate a 1.5σ shift or to
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multiply σAssy by an adjustment factor. Therefore, we estimate the assembly defect rate from ZAssy by finding
6.57 in the table for tail areas of a standard normal distribution. Thus, the estimated defect rate is 4.1(10-11).
Next we’ll allocate tolerances by modifying Eq. (11.10).

i
iDAssy

i k
Pt σ
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For dimension C, which is made on an N/C lathe:

in.  0025.

)000357(.)05.1(57.6

=

=Ct

The tolerances for the remaining dimensions are calculated similarly and shown in Table 11-6. Com-
paring the tolerances calculated by the DRSS allocation method and RSS allocation shows that some are
larger with one method and some with the other. This is because we chose different values of k  for each
dimension. Had we chosen identical values of k for each dimension, use of the DRSS method would have
given the same tolerances that we calculated using RSS allocation.

Once again, we can easily confirm that the tolerances will equal P if we combine them using the RSS
analysis from Chapter 9, Eq. (9.11).
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11.7 Static RSS Analysis

A second technique from Reference 6 is called static RSS analysis. We can’t use this technique to directly
allocate tolerances, but we can use it to make another estimate of assembly defect rates. The concept
behind Motorola’s static RSS technique is to assume a mean shift on each component dimension that is
equal to 1.5 standard deviations. Further, the shift will occur in the direction that will be most likely to
cause an interference or a failure to meet the requirement. For example, the 1.5σ shift for .450 dimension has
the effect of reducing its mean value to .4484 (.450 – 1.5(.00106)), which makes the gap smaller. The easiest
way to implement this approach is to define a new parameter, PSRSS, as follows:
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PSRSS will be used to calculate ZAssy and estimate the assembly defect rate.
Let’s calculate PSRSS. Comparing the first three terms to Eq. (11.1), we see they are equal to P, or .022 in.

The fourth term is

( )( )

0075.

0025.000357.00106.000357.000357.000357.5.15.1
1

=

+++++=∑
−

=

pn

q
qσ

Now it is easy to calculate PSRSS.
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Now we calculate ZAssy using PSRSS, using Eq. (11.6) with PSRSS in place of P.
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We can estimate the assembly defect rate by looking in a table of areas for the tail of a normal
distribution in the same manner as before. For 5.16, the area in one tail, and thus the estimated assembly
defect rate is 1.31(10-7).

11.8 Comparison of the Techniques

For educational purposes, we need to compare the results of the four allocation techniques (Table 11-7).
The smallest tolerances result when we use worst case allocation. When we use worst case allocation, we
eliminate the risk of assembly defects occurring. Sometimes this may be worthwhile, but in this case it’s
probably not. Each of the other three defect estimation techniques shows a very low probability of a
defect occurring. The difference in the assembly defect rates is the benefit of worst case allocation. The
penalty is component parts that are more difficult to produce. In our example, the tolerances for the RSS
allocation technique are almost twice as large as for the worst case allocation. The benefit for worst case
is that we eliminate a 6.0(10-11) probability of a defect occurring. As you can see, it’s not a very large benefit
in this case.

Table 11-7  Comparison of the allocated tolerances for Requirement 6

Worst Case Statistically       RSS      DRSS
          Mean   Allocated   Allocated   Allocated   Allocated

 Variable     Dimension ± Tolerance ± Tolerance ± Tolerance ± Tolerance
   Name             (in.)       (in.)         (in.)        (in.)        (in.)

C .0600 .0016 .0021 .0028 .0025

E .1200 .0016 .0021 .0028 .0029

G .1200 .0016 .0021 .0028 .0027

I .4500 .0046 .0064 .0083 .0088

J 3.0250 .0016 .0021 .0028 .0031

K .3000 .011 .015 .0197 .0195

Assembly .00 9.0(10-11) 9.0(10-11) 4.1(10-11)
defect rate

Are there times when it makes sense to use worst case allocation? Absolutely! If there are less than
four dimensions that contribute to a tolerance stack, it is often better. First, the difference between
tolerances allocated by worst case and statistical techniques is smaller with fewer dimensions. Also, the
effect of some of the assumptions is greater with fewer dimensions. For example, suppose that some of the
mean values are not located at nominal. If there are a large number of dimensions in the stack, they will
tend to balance out. If there are only a few, they might not, and there can be a significant effect on
assembly producibility.
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 Another case where worst case might be justified is when safety is involved. Depending on the
consequences of an assembly failure, we may not be able to afford even a small probability of a defect.

In most cases, the benefits (larger tolerances) of either statistical, RSS or DRSS allocation will out-
weigh the risk of an assembly defect. In fact, by estimating the assembly defect rate, we can make a
decision with each of the three about whether the risk of a defect is acceptable. If it is not, we can evaluate
the design at worst case, or make some change in the design concept to alleviate the problem.

11.9 Communication of Requirements

Ideally, if we assign a tolerance using a technique such as statistical allocation, we can notify the fabrica-
tion shop and the manufacturing process could be appropriately controlled. In the past, there has been no
mechanism to use on an engineering drawing to communicate the assumptions made when assigning a
tolerance to a dimension. This can lead to unexpected defects if the manufacturing shop does not treat a
statistical tolerance appropriately.

A way to communicate statistical design intent is with the ST symbol that is available within ASME
Y14.5M-1994 (Reference 10). Examples of statistical tolerances on drawings are shown in Fig. 11-9.

In Fig. 11-9 (a) and (c), the ST  symbol designates the dimension has a tolerance that was statisti-
cally allocated. In addition to the symbol, a note is required. Although the exact wording of the note is not
specified in the standard, one possibility suggested in ASME 14.5M-1994 is: “Features identified as
statistically toleranced ST  shall be produced with statistical process controls.”

If there is a possibility that the parts will not be produced with SPC, the designer may choose to
tolerance the dimensions as shown in Fig. 11-9 (b). This method gives the manufacturing shop an option
to inspect at smaller limits if SPC is not used. In this case, the standard suggests the note might read:
“Features identified as statistically toleranced ST  shall be produced with statistical process controls or
to the more restrictive arithmetic limits.” The actual wording of the note is at the user’s discretion.

Figure 11-9  Three options for designat-
ing a statistically derived tolerance on an
engineering drawing
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11.10 Summary

Table 11-7 shows a comparison between worst case, statistical RSS, and DRSS allocation. As with the classical
models, the worst case allocation method yields the smallest tolerances, and is the more conservative design.
With worst case allocation, we don’t make any prediction about defect rate, because it is assumed that parts
screening will eliminate any possibility of a defect (not always the case).

We need detailed information about the expected manufacturing process for all of the allocation
models. The best data is from our own operations. If none is available, then we can make estimates from
recommended tolerance tables or use Table 11-1 in this chapter. The use of any of these techniques will
have equal validity within the limitations of the applicable assumptions.

When comparing traditional techniques with the ones presented in this chapter, the primary differ-
ence between them is the amount of knowledge used to establish tolerances. In traditional worst case
analyses, for example, we make decisions based on opinions about producibility. However, worst case
allocation assigns tolerances that are equally producible based on process standard deviations. Clearly,
the second method is more likely to produce products that will meet predictable quality levels.

Similarly, a comparison between traditional RSS and statistical, RSS or DRSS allocation reveals little
difference in the basic principles. However, the allocation models overcome many of the assumptions that
are inherent in RSS. In addition, they provide an estimate of assembly defect rates.

One requirement of the statistical, RSS or DRSS allocation techniques is that the manufacturing
operations understand the assumptions that were made during design. This will ensure that the choice of
process standard deviations used during design will be consistent with the method chosen to fabricate
the parts. Perhaps the best way to accomplish this will be the ST symbol that is referenced in ASME Y14.5
M - 1994.

The question could be asked about whether it is ever desirable to use the traditional methods. There
might be an occasional situation where all the tolerances being analyzed are purchased parts, or otherwise
not under the design engineer’s control. This situation is very rare. The techniques presented in this
chapter are much better approaches because they take advantage of process standard deviations that
have not been previously available, and eliminate the most dangerous of the assumptions inherent in the
traditional methods.

11.11 Abbreviations

Variable Definition

ai, aj, ViBi sensitivity factor that defines the direction and magnitude for the ith, jth and nth dimen-
sion.  In a one-dimensional stack, this is usually +1 or -1.  Sometimes, it may be +.5 or -.5
if a radius is the contributing factor for a diameter called out on a drawing.

di , Ni mean dimension of the ith component in the stack.

gm , F minimum gap required for acceptable performance

n number of independent dimensions in the stackup

p number of independent fixed dimensions in the stackup

P nominal gap that is available for allocating tolerances

P6 gap required to meet assembly quality goal

PD6 gap required to meet assembly quality goal when using DRSS allocation

PSRSS expected gap when performing a static RSS analysis
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σi process standard deviation for the ith component in the stack

σAssy , σDAssy standard deviation of a tolerance stack

σadj adjusted standard deviation used in the DRSS allocation method

ti , Ti allocated equal bilateral tolerance for the ith component in the stack

tjf tolerance value of the jth fixed (purchased parts) component in the stack

twc6 assembly performance criterion (parameter) for the worst case allocation method

twc worst case tolerance of an assembly stack

Zi a measure of the width of the process distribution as compared to the spec limits of the
ith component dimension (standard normal transform)

ZAssy , ZF a measure of the width of the assembly distribution as compared to the assembly re-
quirement (standard normal transform)

TU , USL upper limit of a tolerance range

TL , LSL lower limit of a tolerance range

Cpk , Cp capability indices
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